If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+17x-6=0
a = 28; b = 17; c = -6;
Δ = b2-4ac
Δ = 172-4·28·(-6)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-31}{2*28}=\frac{-48}{56} =-6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+31}{2*28}=\frac{14}{56} =1/4 $
| 1-4(2x+3)=5(x-2)-3(x+1) | | 3x²-18=0 | | 6x-28=-2(x+2) | | 10/3=4/u-5 | | 5x=3(2x-8)=9 | | 9x^2-45x+52=0 | | -3x-8=1- | | 3x+4x-22=66x | | X-36=-9-2x | | 100-21+43k=74k | | x*0.8=63 | | 25y+14=5y | | 18=10x+8x | | -3(u+1)+u=4(u+1)-5 | | 20=10e-5e | | 7x-7+2(2x+5)=-3(x+3) | | 2(x-7)^2-6=0 | | 2w+2-2(-3w-2)=2(w-4) | | 4y-y=4y10 | | 6(x-3)-4=-5(-5x+4)-7x | | 4(u+2)=-2(3u-3)+4u | | 4(u+2)=-2(3u-3)4u | | 4x-9+2(2x+7)=-4(x+1) | | X=x^2+16x+15 | | 8+4(5y-6)=-2(2y-1)+8y | | 6=8-5y | | (A)3x-3+9=12+15 | | 2801.25=2700(1+r.75) | | (8)3x-3+9=12+15 | | 4x+6-2(-8x-2)=4(x-2) | | 6x=8-5 | | -6(5y-1)+7y=-5(y+2) |